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Abstract. The d.c. conductivity and the electric a.c. response from 100 Hz up to 40 MHz
of poly(3n-decylpyrrole) were measured in the 80–330 K interval to characterize the charge
transport behaviour of the system. The d.c. conductivity well fitted the variable range hopping
model, and the loss factor, after having deducted the d.c. contribution, showed a relaxation
peak when the conductivity versus frequency started to rise. The strength of this relaxation
increased with temperature and became too large to be related to a dipolar relaxation; moreover,
the temperature dependence of the loss peak frequency and d.c. conductivity coincided. The
observed relaxation was attributed to the hopping charge transport, as further confirmed
by the temperature behaviour of the relaxation strength and by the frequency dependence
of the exponents of the power law which locally approximate the conductivity behaviour. As
the activation energy of the d.c. conductivity differed from the frequency of the loss peak,
the theoretical prediction concerning the selfsimilarity of the a.c. conductivity was roughly
verified.

1. Introduction

Polymeric materials which are intrinsically conductive have very attractive features for many
electronic applications; unfortunately the highest conductivities are generally accompanied
by relatively poor processability and chemical stability. The search for a right compromise
requires a better understanding of the charge transport mechanisms which are involved,
besides a deeper knowledge of the structure–property relationships. In this paper we
deal with the electrical transport properties of poly(3n-decylpyrrole) (P3DP) [1], having
a moderate conductivity but a promising chemical stability and processability.

Although until now many accurate experiments were carried out [2, 3], the mechanism of
charge transport in conducting polymers has yet to be clarified in detail. The conductivity
is achieved by doping, which produces the formation of solitons [4–6], or polarons and
bipolarons [7] along the conjugated chain. The counterions, injected by doping, remain close
to the conjugation defects, thus granting the electrical neutrality of each macromolecule.
Some peculiar conduction mechanisms [8, 9], related to the motion of charge carriers
delocalized along the macromolecular chains, can be supposed; however, in most common
conducting polymers (e.g. pyrrole and thiophene derivative polymers), owing to the doping
inhomogeneity and structural disorder (crosslinks, dead ends etc) [10] that limits the
conjugation length, the d.c. conductivity is usually modelled by a phonon-assisted hopping
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of electrons between randomly distributed localized states [11]. The transport process is
dominated by the macroscopic disorder rather than by the characteristic properties of the
conjugation defects. On the other hand, the charge transport mechanism is effective not
only on the macromolecular backbone (intra-chain hopping) but also between different
macromolecules (inter-chain hopping) [12, 13]. The charge transfer mechanism which is
the origin of the d.c. conductivity of these systems can be explained by the 3D hopping
among localized states, as typically occurs in some amorphous semiconductors [14], or even
by the hopping among metallic-like regions separated by insulating barriers, as in cermets
[15]. In some highly conducting polymers, an insulator–metal transition (IMT) was found
[16, 17]. While in the insulating regime the temperature-dependent d.c conductivity and the
electric a.c. response were well described by the hopping models, different behaviours were
found near and beyond the IMT boundary [18].

In general, the a.c. electric response becomes a superposition of different contributions:
the dielectric response of the bound charges (dipolar response) sums up to the hopping of the
localized charge carriers and to the response produced by the deformation of the molecular
structures following the diffusion of charge carriers along a percolation path. The overall
electric behaviour can be suitably studied by means of the generalized complex dielectric
permittivity [19], as it takes into account both conductivity and dielectric polarization.
This quantity can be measured by means of the impedance spectroscopy technique, which
provides both d.c. and a.c. behaviour. In these experiments the main issue is the correct
assignment of the observed behaviour to the various phenomena which occur in the system;
besides the conductivity and dipolar polarization, there are electrode effects, interfacial
effects and space charge relaxations. The correct interpretation of the experiments is
obtained by verifying the reliability and physical grounding of the model by which the
fitting procedure is carried out.

2. Theoretical and phenomenological aspects

Many theories provide a description of the behaviour of the conductivity in disordered
systems dominated by hopping conduction, when both temperature of the system and
frequency of the applied electric field are varied [20].

The dependence on temperatureT of the d.c. conductivity can be conveniently
represented by the Mott law [21]:

σdc(T ) = A

T b
exp

(
−
(
T0

T

)γ)
= σ0 exp

(
−
(
T0

T

)γ)
(1)

based on 3D fixed (γ = 1) or variable (γ < 1) range hopping (VRH) models. The
constantsA and T0 depend on the localization and density of the states; the exponents
b and γ depend on the distribution of states around the Fermi level; the value ofγ , in
particular, is related to the dimensions of the transport process. In three dimensions usual
values ofγ are 1/2 and 1/4. The valueγ = 1/2 is probably determined by a Coulomb-type
electron–electron correlation, which leads to a weak gap near the Fermi level, the so-called
Coulomb gap [22, 23], and to a square dependence of the localized state density on the
energy. Forγ = 1/4, the density of localized states near the Fermi level does not depend
on energy [20]. Likeγ , the exponentb, which affects the temperature dependence of the
pre-exponential factorσ0, is determined by the localized state distribution near the Fermi
level. If the state density depends on the square of the energy,b = −1 andσ0(T ) linearly
rises with temperature; otherwise, if the state density is constant,b = 1/2 [20].
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Equation (1) was also confirmed by both the percolation theory [24] and computer
simulations [25], and it was experimentally verified in a wide variety of materials [21].
According to Mott, a charge carrier hops from the localizedi- to thej -state at the transition
rateWij

Wij = ν0 exp(−2αRij −1Eij/kBT ) (2)

whereα is the reciprocal state localization amplitude,Rij is the hopping distance,1Eij the
energy difference between the two states,kB is the Boltzmann constant andν0 represents the
number of hop attempts per unit of time, which is of the order of magnitude of the optical
phonon frequency. The VRH model accounts for the considerable contribution at low
temperature of the charge carriers jumping to not neighbour, but energetically favourable,
states. A key quantity of the hopping mechanism is the critical rateWc, i.e. the fastest rate
at which a macroscopic continuous path across the material can exist; such a path should
be made by all thei–j pairs of states with a transition rateWij > Wc [24, 26]. The rateWc

determines the d.c. conductivity value; in particular,σdc andWc are proportional and show
the same temperature dependence.

The response of a conducting material to an a.c. electric field can be described by
the complex conductivity,σ ∗(ω) = σ ′(ω) + iσ ′′(ω), and by the complex permittivity,
ε∗(ω) = ε′(ω)− iε′′(ω). In fact, these quantities are related by the following equations:

ε′(ω)− ε∞ = σ ′′(ω)
ε0ω

ε′′(ω) = σ ′(ω)
ε0ω

= ε′′d +
σdc

ε0ω
ε′′d(ω) =

σ ′(ω)− σdc
ε0ω

(3)

where ω is the angular frequency,ε∞ is the unrelaxed dielectric constant,ε0 is the
vacuum permittivity andε′′d(ω) is the imaginary part of the permittivity after deducting the
conductivity contribution. In a disordered system where the hopping mechanism dominates,
the conductivity increases as the frequency of the electric field is increased, because the
contribution of charge carriers moving along smaller and smaller distances, i.e., confined
inside clusters of progressively decreasing sizes, increases [27]. As the real and imaginary
parts of the complex conductivity are related to each other by the Kramers–Kronig relations
and to complex permittivity by (3), this effect modifies the overall electric response of the
system to the driving electric field.

Several theories were developed to describe the frequency dependence of the electric
response of a system where the hopping transport mechanism dominates. The total
a.c. response in the high-frequency limit was described by the pair approximation (PA)
introduced by Pollak and Geballe [28]. They assumed a total response produced by the sum
of the individual responses of pairs of sites randomly distributed throughout the material.
Moreover, any contribution to the conductivity from clusters of more than two sites was
completely neglected (in a period of applied field the carriers can hop only between two
sites), and the infinite cluster case (i.e., the case of d.c. conductivity) was separately treated.
In the pair approximation theory the complex conductivity obeys a fractional power law:
σ ′(ω) ∝ ωs

′
and σ ′′(ω) ∝ ωs

′′
, with both s ′ and s ′′ less than 1 (s ′ > s ′′), and slightly

increasing with the frequency.
At intermediate frequencies, in a period of the applied electric field, the carriers can

cross a number of sites (multiple hopping region). The theoretical approaches developed
for this case can be roughly classified in two groups, referred as theeffective-medium
and cluster theories, respectively. The theories of the first group, which include the
effective-medium approximation(EMA) model [29], theextended pair approximation(EPA)
model [30, 31, 32] and thecoherent medium approximation(CMA) model [33], represent the
disordered medium surrounding a particular pair of sites by an effective ordered medium,
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whose parameters are subsequently chosen to match the properties of the actual medium.
The theories of the second group, such as thecontinuous-time random-walkmodel [34]
or the percolation-path approximation(PPA) [35], solve directly the frequency dependent
percolation problem using the transition probability distribution among sites.

All the models for the intermediate frequency region consider the d.c. and a.c.
conductivities as originating from the same hopping mechanism [36]. In this approach, the
conductivity of a 3D system with a densityn of charge carriers follows from the Einstein
relation [34]:

σ ∗(ω) = σ ′(ω)+ iσ ′′(ω) = ne2

kBT
D(ω) (4)

wheree is the electron charge.D(ω) is the a.c. diffusion constant defined as:

D(ω) = W ∗(ω)R2
op (5)

whereW ∗(ω) andRop are the optimal coherent hopping rate and the characteristic hopping
length, respectively. Forω = 0, (4) provides the equation of the d.c. diffusion:

σdc = ne2

kBT
R2
opWc. (6)

The quantitiesWc andRop can be related to the parametersσ0 andT0 in (1) by the following
relationships [20]:

Wc = ν0 exp

(
−
(
T0

T

)γ)
σ0 = ne2

kBT
R2
op ν0. (7)

By combining (4), (5), (6) and (7), you can define a normalized complex conductivityσ ∗n
in terms of the optimal coherent hopping rate:

σ ∗n (ω, T ) = σ ′n + iσ ′′n =
σ ∗(ω, T )
σdc(T )

= W ∗(ω, T )
Wc(T )

. (8)

In the multiple hopping region, i.e., for frequencies below the real partW ′ of the optimal
coherent hopping rateW ∗, the complex conductivityσ ∗n shows a selfsimilar behaviour if
plotted versus the dimensionless frequency,�, defined by the following relation:

� = ω/ωc = ωk/Wc. (9)

ωc is a characteristic frequency proportional to the hopping critical rateWc through the
constantk which depends on the material [37];ωc defines a frequency scale for the electric
response of the overall system.

All the models EMA, EPA, PPA and CMA lead to similar behaviours of the normalized
conductivityσ ∗n (�); the common characteristics are:

• The frequency dispersion of the conductivity occurs at about the frequency� = 1.
• In the extremely low frequency region, i.e., for� = ω/ωc � 1, the conductivity can

be written [20, 29–32, 36, 38]:

σ ∗n (�)− 1= iα1�+ α2�
2 (10)

whereα1 andα2 are constants depending on the model.
• At higher frequencies, i.e. for 1� � < W ′/ωc, all the theories predict for both

σ ′n and σ ′′n a rising trend which is approximately represented by a power law:σ ′n ∝ �s
′
,

σ ′′n ∝ �s
′′

(both s ′ ands ′′ lower than 1).
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According to (10), the imaginary part of the normalized conductivity linearly depends
on the frequency, then from (3) it follows thatε′(ω, T ) is frequency independent, i.e.,
coincides with the static valueεs given by the following equation:

εs − ε∞ = σdc

Wc

α1k

ε0
. (11)

The real part of (10) has a square dependence on frequency, thenε′′d(�) goes linearly to zero
for � � 1. Moreover, asσ ′n/� ∝ �s

′−1, ε′′d(�) zeros even for� � 1. Consequently, a
loss peak forε′′d(�) is expected to occur in the intermediate region, where the real partε′(�)
decreases fromεs according to the power law behaviour�(1−s

′′) [36]; the slope ofε′′d(�) is
expected to come near 2 below the loss peak frequency and to approachs ′−1 above the peak
frequency. This result means that the electric response produced by the hopping mechanism
in the intermediate frequency region can be described in a quite similar way as for the
dipolar polarization, the dielectric parameters having a different meaning and temperature
behaviour. In fact, when the electric response is dominated by the charge hopping transport,
the characteristic parameters, as well as the relaxation strength1ε = εs − ε∞, the critical
frequencyωc and the frequency of maximum of the loss peakωm, are affected by the
d.c. conductivity. This can be shown by substituting in (11)σdc obtained from (6) and
(7):

1ε = σ0(T )
α1k

ν0ε0
. (12)

The relaxation strength,1ε, shows the same dependence on temperature as the pre-
exponential factorσ0(T ) which influences the d.c. conductivity behaviour in (1). Similarly,
the critical frequencyωc, defined by (9), can be rewritten by means of (6), (7), (9) and (11)
in the form

ωc = Wc

k
= σdc(T )α1

1ε(T ) ε0
= ν0

k
exp

(
−
(
T0

T

)γ)
. (13)

This last shows thatωc has the same temperature dependence as the exponential factor of
the d.c. conductivity in (1).

Finally, as the electric response is selfsimilar if plotted versus� = ω/ωc, the loss peak
ωm shifts with temperature as the critical frequencyωc. Then, the conditionωm ∝ ωc can
be rewritten by means of (13) leading to the relationship:

σdc = p1εε0ωm (14)

which is called the Barton–Nakajima–Namikawa (BNN) condition [39–41]. As the
parameterp is temperature independent and of the order of 1, (14) demonstrates that the
frequency position of the loss peak is determined by the d.c. conductivity. The main
difficulty of the analysis of electric response is distinguishing between polarization and
conductivity effects. To give an idea of this difficulty, let us consider three different
electric response functions: a typical dipolar response, i.e., the normalized Havriliak–
Negami relaxation function (HN) with respect to the normalized variable� = ωτ (τ
is the relaxation time) [42],H(�) = [1 + (i�)1−α]−β ; the response function predicted
by the hopping model based on the effective medium approximation (EMA) and that
predicted by the model based on percolation path approximation (PPA). These functions
were compared by calculating the real and imaginary parts of the normalized conductivity
(8) under the following conditions: for the dipolar response, the valuesα = 0 andβ = 0.7
for the HN parameters were assumed, and the normalized conductivity was written as
σ ∗n = 1 + H(�)� by taking into account (3), (8), (9) and (11); for the EMA model,
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the equationW(�) ∗/Wc = exp[i�W/W ∗(�)] was numerically solved and the normalized
conductivity was calculated by (8) [20]; for PPA, the Dyre function,σ ∗n = i�/ loge(1+ i�),
was considered [27, 35].

Figure 1. (a) Plot of (σ ′n−1) andσ ′′n against� for various response functions (see text). (b) Plot
of the log derivativess′ and s′′ of the corresponding functions in (a). In the case of the HN
function, s′ ands′′ become equal and frequency independent at high�.

As the trends of all the functions (figure 1(a)) are very similar, very accurate
experimental data, together with a carefully analysis of the additional peculiarities, are
needed to show which function is more suitable to represent the behaviour of a given
system. A more sensitive method for a such assignment can be applied if the experimental
data have a sufficient accuracy to calculate thes ′ and s ′′ exponents from the logarithmic
derivatives of the functions,(σ ′n−1) andσ ′′n , which are defined by the following equations:

s ′(�) = ∂

∂ loge(�)
loge(σ

′
n − 1) (15a)
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s ′′(�) = ∂

∂ loge(�)
loge σ

′′
n . (15b)

These quantities calculated for the functions of figure 1(a) and drawn in figure 1(b), are
able to point out some differences among various models which could not be recognized
by simply plotting the normalized conductivity.

All the theoretical models here mentioned were developed to explain some of the typical
behaviours which have been recognized in the electrical response of disordered solids. In
fact, the experiments showed that the peak of the quantityε′′d(ω) (3) is broad and asymmetric,
and then markedly different from a Debye-like relaxation peak [27, 36, 43, 44].

The shape of such a loss peak, normalized to the peak amplitude, is temperature
independent. Moreover, the real part of the conductivity decreases and gradually becomes
stable on approaching the low frequencies; the rising edge occurs around the frequency of
the loss peak.

It was also observed thatσdc andωm depend on temperature according to the Arrhenius
law, and the activation energy is the same (more complex temperature dependences were
also observed) [36]. Finally, in ionic and electronic glasses it was found that the BNN
relationship (14) between frequencyωm of the loss peak andσdc is fulfilled [41, 45, 46].

However, as all the models account for these experimental characteristics, the predicted
behaviour of the electric response does not greatly differ from a hopping model to another;
on the other hand, the peculiar characteristics of the materials are not sufficiently considered.
Consequently, a precise experimental verification of a specific model is often impossible, and
then the elements previously recalled are generally expected as more useful to distinguish
between conductivity and dipolar relaxation.

In any case, even if the analysis of experimental data fails the objective to decide
which model is more appropriate to represent the conductivity behaviour, it can eventually
provide results capable of giving a rationale of the observed phenomena, provided that
all the different phenomenological aspects are examined and compared. Accordingly, we
have approached the discussion of our experimental results in the next sections by taking
into account all the phenomenological aspects of the electric response of our system before
checking a specific model. That allowed us to assign the observed relaxation to the charge
hopping process, which is the most probable cause of the d.c. and a.c. conductivity in our
system.

3. Experiment

3.1. Materials

Poly(3n-decylpyrrole) (P3DP) is a pyrrole derivative where the hydrogen atom in position
3 was substituted with a long alkylic chain (figure 2). The molecular structure of
poly(3n-decylpyrrole) is planar with a centre of symmetry; Raman and IR spectroscopy
measurements [47] have shown that, like in polypyrrole [48, 49], adjacent pyrrole rings in
P3DP are oriented in opposite directions. The alkylic side chains can be shaped as random
coils and x-ray experiments [50] did not find any supramolecular order.

The P3DP samples were obtained in form of films via the electrochemical oxidation of
the 3n-decylpyrrole dissolved in propylene carbonate withp-toluene sulphonate (tosylate)
(Ts−) as dopant electrolyte. The concentration of the dopant in the final product is about one
counterion for each four to five pyrrole rings. The electrochemical deposition was carried
out with a current density of 0.05 mA cm−2 under isothermal conditions at 298 K and in
nitrogen atmosphere.
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Figure 2. The molecular structures of poly(3n-decylpyrrole) and tosylate counterion.

The d.c. conductivity of the samples measured at 298 K was(2.7± 0.3)× 10−2 S m−1.
Such a value is four or five orders of magnitude lower than that of a polypyrrole doped
at the same level [51, 52]. In fact, although the presence of alkylic chains increases the
processability of the polymer, both the side chain and the size of counterions can hinder a
regular and close-packed arrangement of the macromolecules [53].

3.2. Measurement methods

The d.c. conductivity of the sample films inserted in a four-gold-parallel-contact cell was
measured in the temperature interval 80–330 K by a Schlumberger Solartron voltmeter 7081;
the d.c. current was supplied by a Keithley generator 2202.

For the impedance measurements, disc shaped films inserted in a parallel golden plate
capacitor were used. The admittance was measured for temperatures from 80 to 330 K
and in the frequency range 100 Hz–40 MHz using an HP4194A impedance analyser.
Measurements were carried out on samples of different thickness (90 and 120µm). As the
measured conductance and capacitance were inversely proportional to the sample thickness,
the occurrence of spurious contact effects can be excluded. Also theI–V -characteristic of
P3DP films was linear within about 0.2%, for applied electric fields lower than 103 V m−1,
so that no space charges developed at the electrode–sample interfaces. The d.c. conductivity,
as measured by the parallel plate capacitor, was equal to that measured by the four-contact
cell; this indicates that the interface effects were negligible. Moreover there was no
significant anisotropy of the electrical conductivity of films. This behaviour was found
also for polypyrrole doped by tosylate [54].
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4. Results and discussion

4.1. D.c. behaviour

The d.c. conductivity data of P3DP films for temperatures from 330 to 90 K are shown in
figure 3. The experimental data were suitably fitted by (1) taking into account a few hints
by Hill [14]. The value ofγ was obtained by the linear fit of the logarithm of activation
energy,1E = − d[loge(σdc)]/d[1/kbT ], versus loge(1/kBT ) (see figure 4). The obtained
value,γ = 0.51±0.01, is in good agreement with the values reported in the literature for a
large number of amorphous semiconductors. Subsequently, the parametersA andT0 were
calculated by fitting the experimental data by (1) and assuming forb the theoretical value
−1, which corresponds toγ = 1/2 (see previous section). The validity of the assumed
b-value was also confirmed by comparing the residues of the fits with different values
of b in the [−1, 1] interval. The calculated parameters were:b = −1; γ = 0.51± 0.01;
A = 26.6±0.2 S m−1 K−1; T0 = (4.7±0.1)×104 K. The activation energy,1E, represents
the maximum of the energy differences between couples of localized states allowing the
hopping charge transport along a percolation path [27]. In the considered temperature
interval,1E increases with temperature from 0.1 to 0.18 eV; these values agree with those
for films of polypyrrole and its derivatives of comparable conductivity, measured elsewhere
[10, 53, 55]. The observed temperature behaviour well matches the VRH model and
moreover indicates that the transport mechanism is scarcely affected by the viscosity. This
conclusion is also confirmed by experiments carried out in different conducting polymers,
where a conductivity rise was observed by increasing the applied pressure [56–59]. In fact,
if the viscosity were influent, the reduction of the free volume under pressure would lead
to a decrease of the conductivity and to an increase of activation energy.

Figure 3. D.c. (square) and a.c. (circles) conductivity at 100 Hz in a log scale plotted against
1000/T . Solid line from the fit equation.
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Figure 4. Plot of loge(1E) of the d.c. conductivity (circles) and angular frequency of the loss
peak (triangles) against loge(1/kBT ). Solid lines represent the apparent linear fits.

4.2. A.c. behaviour

The real part of the permittivity,ε′(ω), and the real a.c. conductivity,σ ′(ω), at different
temperatures, as determined by the admittance measurements, are plotted in figures 5(a)
and (b), respectively.σ ′(ω) maintains a stable value(σ ′(ω) = σdc) up to a frequency
where it begins to monotonically increase (figure 5(a)). The frequency at which the
slope of the conductivity changes increases with temperature, and, for frequencies where
σ ′(ω) � σdc, σ ′(ω) approaches a power law behaviour. The temperature dependence of
the a.c. conductivity at low frequency is the same as that of the d.c. conductivity; that is
shown in figure 3 for 100 Hz. The coincidence of the temperature dependences ofσdc
andσ ′(ω) at low frequencies confirms that the electrode polarization effects are negligible.
For higher frequencies,σ ′(ω) displays a weaker temperature dependence (figure 5(a)). The
measured values ofε′ are rather large and greatly increase with temperature (figure 5(b)).
The anomalous rise ofε′ in the low frequency side of the spectrum resembles that observed in
many other systems, and can be related to the low frequency dispersion (LFD) [60, 61]. This
effect becomes evident below a characteristic frequency, which decreases as the temperature
decreases [62]. This assignment is also supported by the observation that, at low frequency,
the logarithmic slope ofε′ against frequency is slightly greater than−1, and theε′ values
are not very sensitive to the change of the electric field amplitude. In fact, if there were
any Maxwell–Wagner or electrode polarization phenomenon, a stronger dependence ofε′

would be observed on both the electric field amplitude and frequency; also the slope in the
log scale against frequency should fall between−2 and−1 [61, 63–65].
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Figure 5. (a) Log–log plot of the real partε′ of the permittivity against frequencyν at selected
temperaturesT = 297.1 K, 247.4 K, 219.0 K, 185.7 K, 157.6 K, 138.7 K, 115.8 K, 99.6 K,
92.5 K in the order from upper to lower spectra. (b) Log–log plot of the real partσ ′ of the
conductivity against frequencyν at selected temperaturesT = 297.1 K, 247.4 K, 219.0 K,
185.7 K, 157.6 K, 138.7 K, 115.8 K, 99.6 K, 92.5 K in the order from upper to lower spectra.

At higher frequencies, a dielectric-like relaxation can be recognized. In fact, the
observed decrease ofε′ parallels an evident change of the slope ofσ ′(ω) (figures 5(a)
and (b)), and both these effects shift towards low frequencies as the temperature decreases.
This is confirmed by the plot of the quantityε′′d(ω) (3) as a function of frequency (figure 6)
which shows a loss peak together with a decrease ofε′(ω). At low frequency,σ ′(ω) ∼ σdc
and ε′′(ω) reachesσdc/(ε0ω) so that the values ofε′′d(ω) become less accurate; these data
have been omitted from figure 6.

At this point we should decide whether the observed relaxation is related either to the
hopping charge conductivity or rather to the bound charge motions. In a system where the
hopping charge transport is the unique phenomenon affecting the electric response, (14)
provides the frequency value at which the conductivity begins to depend on frequency. The
order of magnitude of such a frequency value can be appraised by considering the frequency
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Figure 6. The quantity [ε(ν)−ε∞] andε′′d for different temperatures plotted against the angular
frequencyω in a log–log scale.

ωs = σdc/(1ε ε0), corresponding to the assumptionp = 1. In this case, the loss peak can be
only found in the plot of the quantityε′′d(ω) = ε′′(ω)−σdc/(ε0ω), and it is never observable
in the plot of the dielectric lossε′′(ω). This behaviour is a consequence of the fact that
the d.c. and a.c. responses are produced by the same transport phenomenon, and the system
behaviour fulfils the BNN condition [27]. However, such an electric response cannot be
considered as peculiar to the hopping charge transport; in fact, it could be also observed in
the presence of a dipolar relaxation superimposed on a frequency independent conductivity.
To explain better, let us consider an ideal system where the normalized dielectric response,
ε∗n(ω, T ), is a superposition of a dipolar relaxation, which for simplicity we suppose Debye-
like, and a frequency-independent conductivity:

ε∗n(ω, T ) =
ε∗(ω)− ε∞

1ε
= 1

1+ iωτ
− i

σdc

ε0ω1ε
. (16)

By definingωs = 1/τs = σdc/(ε01ε), ε∗n(ω, T ) becomes:

ε∗n

(
ω

ωs
, T

)
= 1

1+ i(ω/ωs)τ/τs
− i

ωs

ω
(17)

i.e., it becomes dependent on the termτ/τs when plotted againstω/ωs . The real and the
imaginary parts of (17) have been plotted in figure 7 for three different values of the ratio
τ/τs . It is apparent that, asτ/τs decreases, the imaginary part ofε∗n shows a relaxation
peak only whenτ/τs becomes less than 1; in other words, whenτ/τs > 1 the relaxation
peak ofε′′(ω) practically disappears, and the response is dominated by the d.c. behaviour.
As in a polar dielectric system the ratioτ/τs depends on temperature, then suitable values
of τ/τs , i.e., less than 1, to put in evidence the peak relaxation in the imaginary part of
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Figure 7. The real,ε′n (solid line), and imaginary,ε′′n (dashed line), parts of the normalized
dielectric response plotted against� = ω/ωs in a log–log scale for different values of the ratio
τ/τs . On the same scale, the real part of the normalized conductivity,σ ′n (dotted line), is shown.

εn, can be eventually reached by changing the temperature. However, in many systems,
where conductivity and dipolar relaxation are coupled each other by viscosity, the product
σ(T )τ(T ) is independent of temperature and the quantity:

p = τ

τs
= τ(T )σ (T )

1ε(T )ε0
(18)

can become a quasi-constant and close to 1, so that the relaxation peak ofε′′(ω) can
no longer be observed. As (18) coincides with the BNN condition, it is impossible to
distinguish, without additional information, if the electric response originates from dipoles
rather than from hopping charges.

Significant information to check the nature of the electric response can be obtained by
analysing the temperature behaviour of the conductivity, relaxation strength and frequency
of the loss peak, as carried out by other authors. These parameters can be extracted by
fitting the permittivity spectra with the following equation:
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ε(ω) = ε∞ + (εs − ε∞)H(ω)− i
σdc

ε0ω
+ B

ε0
(iω)(n−1) (19)

whereH(ω) = [1 + (iωτ)(1−α)]−β represents the normalized Havriliak–Negami relaxation
function (HN); (iσdc/ε0ω) is the d.c. conductivity contribution, andB(iω)n−1/ε0 describes
the effect of the low frequency dispersion (LFD);B is a constant andn < 1 [62]. Equation
(19) accounts for the presence of a relaxation phenomenon, whatever the origin, and
for a charge transport contribution in phase with the driving electric field. The fit of
the experimental data by (19) was carried out using a complex non-linear least square
procedure which simultaneously minimizes the deviations of both the real and imaginary
parts, by taking into account the Kramers–Kronig relations [65]. The fit obtained by (19)
is plotted in figure 8 where each of the three different contributions is also indicated. The

Figure 8. (a) The real part,ε′, of the permittivity at 157.6 K plotted against log of frequency
ν. The resulting fit (solid line) sums up the HN (short dashed line) and LFD (dashed–dotted
line) contributions. (b) The imaginary part,ε′′, of the permittivity at 157.6 K plotted against
log of frequencyν. The resulting fit (solid line) sums up the HN (short dashed line), LFD
(dashed–dotted line) and the d.c.,σdc/ωε0 (dashed line) contributions.
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Figure 9. The Arrhenius plot of the angular frequencyωm against the reciprocal temperature
1000/T . The squares are the frequencies of the loss peak calculated by the fit; the circles
represent the frequencies of the loss peak directly determined from the spectra ofε′′(ω). The
solid line is (13). In the inset, the residues against reciprocal temperature are shown.

LFD contribution toε′(ω) is appreciable in the frequency interval whereε′(ω) should be
constant, while the contribution toε′′(ω) is negligible in the same frequency range as the
d.c. conduction effect is dominant. Though the chi-square value is quite reasonable, the
residues show that the experimental data on the high frequency tails are not well fitted by
(19). The frequencyωm of the loss peak was either directly determined from the spectra or
calculated by the relaxation time provided by the fitting. The quantityωm was plotted in an
Arrhenius plot against reciprocal temperature in order to show that the activation energy is
slightly increasing with temperature (figure 9). The behaviour ofωm parallels that of the d.c.
conductivity; in fact log10(ωm)matches a power law behaviour versus reciprocal temperature
with an exponent 1/2 (solid line in figure 9). That is the opposite of that occurring in
a dielectric relaxation process, where due to cooperative phenomena the activation energy
decreases as the temperature rises [66]. It is obvious that this behaviour cannot be attributed
to a main dipolar relaxation process. Also the rise of the relaxation strength with temperature
would be very unusual for a dipolar relaxation (figure 10). Moreover, as the value of theε′

plateau is rather large (around 60 at room temperature), it is not likely to arise from molecular
dipoles, also considering that the apparent density of the material is quite low (0.5 g cm−3).
Such a large value of the polarization could rather be provided by delocalized charges on the
oxidized macromolecule and by tosylate counterions bound to the molecular chain defects.
This conclusion definitely relates the dielectric response to those charge carriers which
cause the d.c. conductivity. On the other hand, the contribution to the observed relaxation
of weakly bound charge carriers was observed in many other materials, as well as ionic
and electronic glasses, amorphous semiconductors, transition-metal oxides and sulphides
[21, 43, 45, 67–69], metal-cluster compounds, cermets and carbon-polymer composites [61],
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Figure 10. The relaxation strength plotted against temperatureT . Solid line from fit equation.

where the hopping conduction mechanism is clearly recognized. In such materials the
contribution of the dipolar orientation is weak and the electric response is dominated
by diffusive charge hopping processes, involving both ionic and electronic carriers. All
materials, where the conductivity arises from diffusive hopping or tunnelling of charge
carriers among randomly distribute sites, show very striking similarities [26, 27]. Similar
properties have been also observed in the dielectric response of different polymeric materials,
as well as polyaniline [70–73], polypyrrole [74–79] and other conducting polymers [80–82]
having conductivity values close to those of the semiconductors. Recent experiments on
polypyrrole stated a strong correlation between dielectric response and d.c. conductivity,
as this latter and the frequency of the loss peak meet the BNN condition [78, 79, 83]. On
this basis, we gained the conviction that even the overall electric response of the poorly
conducting polymer here considered could conveniently be analysed within the frame of
theories developed for describing the charge transport mechanism in disordered systems.

Despite the high doping level, the polymer here considered exhibits a low value
(σ298 = 2.7 × 10−2 S m−1 at 298 K) and a considerable variation of d.c. conductivity
with temperature(log10(σ298/σ90) ≈ 5), due to large interchain separation and disorder,
which make difficult the charge transport through the material. In this condition the system
is well away from the insulator–metal transition [16, 18], and therefore the hopping models
should well describe the electrical response in the whole temperature and frequency range.

To relate the electric response to a hopping charge transport, three main requirements
have to be satisfied:

(i) the d.c. conductivity must originate from hopping charge transport;
(ii) the relaxation strength must depend on temperature as the preexponential factor

σ0(T ) of the d.c. conductivity;
(iii) the frequency of the loss peak observed inε′′d (ω) must depend on temperature with

the same exponential law as the d.c. conductivity.
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The requirements (i) and (ii) are equivalent to the BNN condition betweenωm and σdc.
As previously discussed, the system here analysed well fulfils the requirement (i). The
temperature dependence of the relaxation strength1ε is almost linear (figure 10), just as
for the prefactorσ0(T ) (see (12)), and then it fulfils the requirement (ii). Though this
behaviour seems to be unusual, also other materials, such as metal cluster compounds
[61] whose d.c. conductivity behaviour is describable by the Mott law (1) withγ = 1/2,
show a relaxation strength increasing with temperature. In contrast, in those systems where
the conductivity scales with the exponentγ = 1/4, the relaxation strength decreases with
increasing temperature [55, 78, 79]. This result agrees with theoretical predictions previously
quoted, which state that in (1), forγ = 1/2, b is −1, and, forγ = 1/4, b is 1/2. Finally,
the temperature behaviour of the frequency peakωm is well fitted by (13) forγ = 1/2
(figure 9); the calculated fit parameters are:

ν0/k = 4.79× 1011 Hz T ∗0 = 2.67× 104 K.

As expected [37] the factorν0/k is of the order of the phonon frequency. The residues
drawn in the inset of figure 9 are randomly distributed around zero and demonstrate the
very good agreement between the experimental data and the theoretical prediction provided
by (13). However, the temperature parameterT ∗0 for ωm is smaller by a factor 1.76 than
the corresponding parameterT0 for the conductivity; this means that the activation energy
of the relaxation (1E = 0.12 eV at 300 K) is smaller than that of the d.c. conductivity
(1E = 0.18 eV at 300 K). As shown in figure 4, the activation energy, as well as the d.c.
conductivity, increases with temperature, thus confirming the common origin of the charge
transport mechanism and the relaxation. In fact, such a temperature behaviour cannot occur
in the presence of a viscous coupling between these two phenomena, which conversely
could lead to fulfilment of the BNN condition.

Figure 11. The angular frequency,ωm, of the loss peak plotted against the angular frequency,
ωs = σdc/ε01ε. In the inset the ratioωs/ωm is plotted against temperatureT .
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Figure 12. (a) Plot of the real part,σ ′n, of the normalized conductivity against� = ω/ωs . The
data relate to the temperature interval 100–295 K. (b) Plot of the imaginary part,σ ′′n , of the
normalized conductivity against� = ω/ωs calculated by using the same data as (a). The data
relate to the temperature interval 100–295 K.

The intermediate frequency hopping theories do not predict an activation energy for
the relaxation loss less than that of the d.c. conductivity; however, this fact is reasonably
expected by taking into account that the d.c. conductivity is essentially determined by
the jumps having the highest energy barriers, while the a.c. conductivity at the frequency
ωm ∼= ωs is determined by the charge carriers diffusing on short distances, i.e., by the
jumps having the lowest energy barriers [78]. At high frequency, especially at low
temperatures, the contribution to the electrical response due to carriers hopping among
few neighbour sites is not negligible. In this regime, where the pair approximation [25]
becomes valid, the a.c. electric response is no longer closely related to the d.c. conductivity
[43]. Some discrepancies concerning the predictions of intermediate frequency hopping
theories can arise from an additional contribution of charges hopping between two sites
only.
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Figure 13. (a) The real,ε′n, and imaginary,ε′′n − i(�)−1, parts of the normalized permittivity
are plotted against� = ω/ωs in the temperature interval 100–295 K. (b) The real,ε′n, and
imaginary,ε′′n − i(�)−1, parts of the normalized permittivity are plotted against�m = ω/ωm.
The data are the same as in (a).

According to (14), if the frequencyωm of the loss peak for each temperature is
proportional to the quantityωs(T ) = σdc(T )/(ε01ε(T )), the BNN relation is fulfilled.
The data drawn in figure 11 roughly meet the BNN relation, while the ratioωs/ωm varies
from 0.5 to 2.5, as shown in the inset. This result corresponds to a lack of selfsimilarity
of the normalized complex conductivity,σ ∗n , as a function of the dimensionless frequency
� = ω/ωs (figure 12). Though a complete superposition of the normalized conductivity
(different curves in figure 12) is not verified, it has to be taken into account that the
conduction phenomena are also accompanied by dielectric effects. The selfsimilarity can
be tested also for(ε′ − ε∞)/1ε and ε′′d/1ε versus the same variable� (figure 13(a)),
leading to the same conclusion. However, if the previous quantities are plotted versus
�m = ω/ωm = p(T )ω/ωs (i.e., scaled against the frequency of the loss peak) a more
satisfactory selfsimilar behaviour is obtained (figure 13(b)). On these bases, we conclude
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that the behaviour of the complex permittivity is essentially independent of temperature
(i.e., selfsimilar); however the scaling variable is different from that predicted by BNN. The
last remark concerns the low frequency tail of the relaxation peak, which shows a log slope
value smaller than that (about 2) predicted by the intermediate frequency hopping models;
however, this behaviour was previously observed also in other materials [27, 36].

A deeper qualitative comparison between a description based on hopping theories and
on the Havriliak–Negami function can be performed by analysing the coefficientss ′ and
s ′′ defined by (15a) and (15b), and plotted in figure 1(b). There are two main differences
between the behaviour predicted by EMA (figure 1(b)) and that represented by the HN
dielectric function, i.e., the existence of the crossing point betweens ′ ands ′′ and a slightly
increase of both parameters, which never coincide, as the frequency increases up to the
highest values. In other terms, while the behaviours ofs-parameters are almost similar in
the low frequency region, just above the critical frequency the behaviour predicted by the
EMA model diverges from the power law trend of the HN function.

The experimental data and theoretical predictions can be compared by plottings ′ and
s ′′ versus the normalized frequency� = ω/ωs (figure 14). The data related to different
temperatures almost overlap, so that a common behaviour as predicted by intermediate
frequency hopping models can be recognized. In particular, the low frequency trend for
s ′ ≈ 2 and s ′′ ≈ 1 and the existence of a crossing point at high frequency well match
the theoretical predictions. The twos-parameters do not tend asymptotically to the same
high frequency value, as should occur if the HN function were a valid representation; on
the contrary, above a given frequency�, s ′′ becomes greater thans ′, according to the
prediction of the intermediate frequency hopping models. For higher�, many theories

Figure 14. Plot of s′ and s′′ against� = ω/ωs calculated from the spectra in the temperature
interval 100–295 K.
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predict a transition to the pair approximation (PA) regime. PA models typically predict
σ ′′/σ ′ ∝ ln(ν0/ω) [25, 43, 44], which meanss ′′ < s ′. But s ′ < s ′′ at high� ands ′′ −s ′ does
not decrease (figure 14); accordingly the transition to the PA regime, if it occurs, should be
at higher�.

Some words are necessary to comment on the presence of a low frequency dispersion
(LFD) effect. It is generally accepted that LFD cannot be explained by the intermediate fre-
quency hopping models [62], and this fact leads to the conclusion that the two phenomena
have different origin. However, we observed that the scaling behaviour of LFD parallels
that of the loss peak (figure 13(b)). This result was also found by van Staveren for some
metal cluster compounds where the conduction is undoubtedly caused by the hopping charge
transport [61]. Then, in our opinion, it is difficult to consider the two phenomena as not
related each other.

5. Conclusions

The d.c. conductivity and the electric a.c. response up to 40 MHz of poly(3n-decylpyrrole),
as measured from 80 up to 330 K, provided valuable information to characterize the charge
transport behaviour of the system. The d.c. conductivity well fits the VRH model. As the
conductivity starts to depend on frequency, a loss peak was observed. The frequency of
this loss peak shows a temperature dependence which coincides with that observed for d.c.
conductivity; the strength of this relaxation increases with temperature and becomes too
large to be related to a dipolar relaxation. On the other hand, the theoretical models for the
hopping charge transport predict the existence of a loss peak like that observed. The most
obvious conclusion is that a unique charge hopping process produces both the observed
d.c. and a.c. conductivities; this accounts also for the observed temperature behaviour of
the activation energy and frequency of the loss peak. The increase of the conductivity
activation energy with temperature and of the conductivity with the pressure can be explained
by the increase of the localized state density near the Fermi level. No viscosity effects
can be envisaged, as, in those systems where the conductivity is strongly related to the
viscosity, the conductivity activation energy decreases with temperature and increases with
pressure. Moreover, as the dipolar relaxation is also dominated by viscosity, the temperature
behaviour of the loss peak is a good test to decide what is the origin of the observed
relaxation.

A further confirmation that the observed relaxation has its origin in the hopping charge
transport is given by the temperature behaviour of the relaxation strength and the frequency
dependence ofs ′- ands ′′ coefficients.

In contrast, the theoretical prediction concerning the selfsimilarity of the a.c. conductivity
is roughly verified, as the activation energy ofσdc is slightly different from that ofωm;
also the overall behaviours of the conductivity and permittivity are not well fitted by the
theoretical models which lead to a selfsimilar behaviour. Several causes can be envisaged
to explain these discrepancies:

(i) the proposed models are based on very general assumptions which do not take into
account the material characteristics and the nature of charge carriers;

(ii) all the models consider the fixed hopping mechanism only; the VRH is considered
by introducing some corrective terms only;

(iii) the hopping transport mechanism is generally accompanied by other effects, such as
dipolar relaxation and many body long range interactions, which are not taken into account
and



5616 S Capaccioli et al

(iv) the lack of selfsimilar behaviour could be related to the contribution of charges
hopping between only two sites.
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